Minggu, 12 Desember 2010

siklus carnot

Siklus Carnot

Untuk mengetahui bagaimana menaikkan efisiensi mesin kalor, seorang ilmuwan muda belia dari negeri Perancis yang bernama om Sadi Carnot (1796-1832 = 36 tahun saja. Mati muda) meneliti suatu mesin kalor ideal secara teoritis pada tahun 1824. Pada waktu itu hukum pertama termodinamika belum dirumuskan (apalagi hukum kedua). Hukum pertama belum dirumuskan karena para ilmuwan belum mengetahui secara pasti kalor alias panas tuh sebenarnya apa. Setelah om Jimi Joule dan teman-temannya melakukan percobaan pada tahun 1830-an, para ilmuwan baru mengetahui secara pasti bahwa kalor merupakan energi yang berpindah akibat adanya perbedaan suhu. Jadi hukum pertama baru dirumuskan setelah tahun 1830. Om Sadi Carnot sudah meneliti mesin kalor ideal secara teoritis pada tahun 1824. Penelitian yang beliau lakukan sebenarnya untuk menaikkan efisiensi mesin uap yang pada waktu itu sudah digunakan. Kebanyakan mesin uap waktu itu kurang efisien… (Ingat lagi penjelasan Mr.Ozan sebelumnya).

Siklus pada mesin kalor ideal hasil oprekan om Sadi Carnot disebut sebagai siklus Carnot. Sebelum meninjau siklus Carnot, alangkah baiknya kita pahami kembali proses ireversibel. Setiap proses perubahan bentuk energi dan perpindahan energi yang berlangsung secara alami, biasanya terjadi secara ireversibel (tidak bisa balik). Misalnya kalau kita menggosokkan kedua telapak tangan, kedua telapak tangan kita biasanya kepanasan. Dalam hal ini, kalor alias panas dihasilkan melalui kerja yang kita lakukan. Prosesnya bersifat ireversibel. Kalor alias panas yang dihasilkan tersebut tidak bisa dengan sendirinya melakukan kerja dengan menggosok-gosok kedua telapak tangan kita . Nah, tujuan dari mesin kalor adalah membalikkan sebagian proses ini, di mana kalor alias panas bisa dimanfaatkan untuk melakukan kerja dengan efisiensi sebesar mungkin. Agar mesin kalor bisa memiliki efisiensi yang maksimum maka kita harus menghindari semua proses ireversibel… Perpindahan kalor yang terjadi secara alami biasanya bersifat ireversibel, karenanya kita berupaya agar si kalor tidak boleh jalan-jalan. Pada saat mesin mengambil kalor QH pada tempat yang bersuhu tinggi (TH), zat kerja dalam mesin juga harus berada pada suhu TH. Demikian juga apabila mesin membuang kalor QL pada tempat yang bersuhu rendah (TL), zat kerja dalam mesin juga harus berada pada suhu TL. Jadi setiap proses yang melibatkan perpindahan kalor harus bersifat isotermal (suhu sama). Sebaliknya, apabila suhu zat kerja dalam mesin berada di antara TH dan TL, tidak boleh terjadi perpindahan kalor antara mesin dengan tempat yang memiliki suhu TH (penyedia kalor) dan tempat yang memiliki suhu TL (pembuangan). Agar si kalor tidak jalan-jalan maka proses harus dilakukan secara adiabatik…

Siklus Carnot sebenarnya terdiri dari dua proses isotermal reversibel dan dua proses adiabatik reversibel. Biar paham, tataplah gambar kusam di bawah dengan penuh kelembutan…

Gambar di atas merupakan siklus Carnot untuk gas ideal. Mula-mula kalor diserap selama pemuaian isotermal (a-b). Selama pemuaian isotermal, suhu gas dalam silinder dijaga agar selalu konstan. Selanjutnya gas memuai secara adiabatik sehingga suhunya turun dari TH menjadi TL (b-c). TH = suhu tinggi (High temperatur), TL = suhu rendah (Low temperatur). Selama pemuaian adiabatik, tidak ada kalor yang masuk atau keluar dari silinder. Setelah itu gas ditekan secara isotermal (c-d). Selama penekanan isotermal, suhu gas dijaga agar selalu konstan. Seluruh proses pada siklus Carnot bersifat reversibel…

Selama pemuaian isotermal dan penekanan isotermal, suhu gas dijaga agar selalu konstan. Tujuannya adalah menghindari adanya perbedaan suhu. Adanya perbedaan suhu bisa menyebabkan terjadi perpindahan kalor (proses ireversibel). Agar proses isotermal bisa terjadi (suhu gas selalu konstan) maka gas harus dimuaikan atau ditekan secara perlahan-lahan. Dalam kenyataannya, pemuaian atau penekanan gas terjadi lebih cepat. Hal ini diakibatkan oleh adanya turbulensi (ingat materi fluida dinamis), gesekan, viskositas alias kekentalan dkk. Akibatnya, proses isotermal yang sempurna tidak akan pernah ada. Sebaliknya, pemuaian dan penekanan adiabatik dilakukan dengan cepat. Tujuannya adalah menjaga agar kalor tidak mengalir menuju silinder atau kabur dari silinder. Adaya gesekan, viskositas alias kekentalan dkk menyebabkan pemuaian dan penekanan adiabatik sempurna tidak akan pernah ada. Perlu diketahui bahwa mesin Carnot hanya bersifat teoritis saja. Mesin carnot tidak ada dalam kehidupan kita. Walaupun hanya bersifat teoritis saja tetapi adanya mesin Carnot sangat membantu pengembangan ilmu termodinamika. Minimal kita bisa mengetahui setiap proses ireversibel yang mungkin terjadi selama proses dan berupaya untuk meminimalkannya sehingga efisiensi mesin kalor rancangan kita bisa bernilai maksimum.

Hasil yang sangat penting dari mesin Carnot adalah bahwa untuk mesin kalor yang sempurna (semua proses reversibel), Kalor yang diserap (QH) sebanding dengan suhu TH dan Kalor yang dibuang (QL) sebanding dengan suhu TL. Dengan demikian, efisiensi mesin kalor sempurna adalah :

Contoh soal 1 :
Sebuah mesin uap bekerja antara suhu 500 oC dan 300 oC. Tentukan efisiensi ideal (efisiensi Carnot) dari mesin uap tersebut.

Panduan jawaban :

Suhu harus diubah ke dalam skala kelvin

TH (suhu tinggi) = 500 C = 500 + 273 = 773 K

TL (suhu rendah) = 300 oC = 300 + 273 = 573 K
Efisiensi ideal atau efisiensi mesin kalor sempurna yang bekerja antara suhu 500 oC dan 300 oC adalah 26 %. Apabila mesin yang kita gunakan dalam kehidupan sehari-hari bekerja antara suhu 500 oC dan 300 oC, efisiensi maksimum yang bisa dicapai mesin tersebut biasanya sekitar 0,7 kali efisiensi ideal (18,2 %). Hal ini dipengaruhi oleh adanya gesekan dan proses ireversibel lainnya…


Contoh soal 2 :
Sebuah mesin kalor menerima kalor (Q) sebanyak 600 Joule pada suhu 300 oC, melakukan kerja (W) 100 Joule dan membuang 500 J pada suhu 100 oC. Tentukan efisiensi sebenarnya dan efisiensi ideal (efisiensi Carnot) mesin ini…

Panduan jawaban :

Suhu harus diubah ke dalam skala Kelvin

TH (suhu tinggi) = 300 oC — 300 + 273 = 573 K

TL (suhu rendah) = 100 oC — 100 + 273 = 373 K

QH = 600 J

QL = 500 J


Efisiensi mesin :
Efisiensi ideal mesin ini :
Efisiensi ideal atau efisiensi mesin kalor sempurna yang bekerja antara suhu 300 oC dan 100 oC adalah 35 %. Efisiensi maksimum yang bisa dicapai mesin tersebut biasanya sekitar 0,7 kali efisiensi ideal = 0,7 x 35 % = 24,5 % (24,5 % x 600 J = 147 J kalor yang bisa digunakan untuk melakukan kerja).

Efisiensi sebenarnya dari mesin ini adalah 17 % (hanya 100 J kalor yang digunakan untuk melakukan kerja). Masih sekitar 147 J – 100 J = 47 J kalor yang bisa dipakai untuk melakukan kerja… Alangkah baiknya jika efisiensi mesin ini dtingkatkan, sehingga kerugian yang kita terima diminimalkan. Prinsip ekonomi juga perlu diterapkan dalam ilmu fisika


Contoh soal 3 :

Sebuah mesin menerima 1000 Joule kalor dan menghasilkan 400 Joule kerja pada setiap siklus. Mesin ini bekerja di antara suhu 500 oC dan 200 oC. Berapakah efisiensi sebenarnya dan efisiensi ideal mesin ini ?

Panduan jawaban :

TH (suhu tinggi) = 500 oC — 500 + 273 = 773 K

TL (suhu rendah) = 200 oC — 200 + 273 = 473 K

QH = 1000 J

QL = 400 J


Efisiensi mesin :
Efisiensi ideal mesin ini :
Efisiensi ideal alias efisiensi carnot = 40 %. Efisiensi mesin sebenarnya = 60 %… Mesin seperti ini tidak ada. Efisiensi mesin tidak mungkin melebihi efisiensi ideal alias efisiensi om Carnot…


Contoh soal 4 :
Agar efisiensi ideal alias efisiensi mesin Carnot mencapai 100 % (1), berapakah suhu pembuangan (TL) yang diperlukan ?

Panduan jawaban :
Agar efisiensi ideal alias efisiensi mesin kalor sempurna bisa mencapai 100 % (semua kalor masukkan bisa digunakan untuk melakukan kerja) maka suhu pembuangan (TL) harus = 0 K.

Dalam pokok bahasan Suhu dan Kalor + Teori Kinetik Gas, Mr.Ozan sudah menjelaskan kepadamu bahwa mencapai suhu 0 K adalah sesuatu yang mustahil alias tidak mungkin terjadi (hasil ini dikenal dengan julukan Hukum Ketiga Termodinamika. Selengkapnya akan dibahas dalam episode berikutnya). Karena 0 K tidak mungkin dicapai, maka suatu mesin kalor sempurna tidak mungkin memiliki efisiensi 100 %. Mesin kalor sempurna saja tidak bisa memiliki efisiensi 100 %, apalagi mesin kalor yang kita gunakan dalam kehidupan sehari-hari…

Karena efisiensi 100 % tidak bisa dicapai oleh mesin kalor maka kita bisa menyimpulkan bahwa tidak mungkin semua kalor masukan (QH) digunakan untuk melakukan kerja. Pasti ada kalor yang terbuang (QL). Hasil ini bisa ditulis dengan bahasa yang lebih gaul :

Tidak mungkin ada mesin kalor (yang bekerja dalam suatu siklus) yang dapat mengubah semua kalor alias panas menjadi kerja seluruhnya (Hukum kedua termodinamika – pernyataan Kelvin-Planck).
Jangan pake hafal… Pahami saja…

Tulisan gaul yang dicetak miring di atas merupakan salah satu pernyataan khusus hukum kedua termodinamika. Disebut sebagai pernyataan khusus karena hanya berlaku untuk mesin kalor saja. Karena om Kelvin dan om Planck yang merumuskannya maka disebut juga sebagai pernyataan Kelvin-Planck. Perhatikan bahwa terdapat kata siklus pada pernyataan di atas. Siklus adalah proses yang terjadi secara berulang. Jadi si mesin kalor bekerja secara terus menerus. Ditambahkan kata siklus karena dalam kenyataannya, semua kalor bisa diubah menjadi kerja seluruhnya apabila prosesnya terjadi satu kali saja. Pahami penjelasan berikut ini…

Pada pokok bahasan hukum pertama termodinamika, Mr.Ozan sudah menjelaskan kepadamu mengenai beberapa proses termodinamika, antara lain proses isotermal, isobarik, isokorik dan adiabatik. Nah, dalam proses isotermal, kita bisa mengubah semua kalor menjadi usaha alias kerja (Q = W). Hal ini bisa terjadi jika prosesnya hanya terjadi dalam satu tahap saja… Amati gambar di bawah :

Amati diagram di atas… Mesin melakukan kerja (W) untuk mengambil kalor alias panas dari tempat bersuhu rendah (QL) dan membuang kalor tersebut ke tempat bersuhu tinggi (QH). Berdasarkan kekekalan energi, bisa disimpulkan bahwa QL + W = QH.

Kalau dalam mesin kalor digunakan istilah efisiensi, maka dalam mesin pendingin digunakan istilah koefisien kinerja (KK). Koefisien kinerja (KK) mesin pendingin merupakan perbandingan antara Kalor yang dipindahkan dari tempat bersuhu rendah (QL) dengan kerja (W) yang dilakukan untuk memindahkan kalor tersebut. Secara matematis bisa ditulis seperti ini :
Jika ingin menyatakan koefisien kinerja mesin pendingin dalam persentase, kalikan saja persamaan ini dengan 100 %.

Koefisien Kinerja mesin pendingin ideal (Koofisien kinerja pendingin Carnot) :
Terdapat beberapa mesin pendingin yang biasa kita gunakan, antara lain kulkas, AC (pendingin ruangan) dan pompa kalor. Alangkah baiknya jika diobok-obok satu persatu…

gerak jatuh bebas

Pada saat kita menjatuhkan benda dari ketinggian tertentu, maka timbul pertanyaan, apakah kelajuannya tetap atau di percepat,apakah jaraknya bergantung pada bentuk, ukuran, atau warnanya? Filsuf yunani yang bernama Aristoteles menjawab pertanyaan-pertanyaan semacam ini berdasarkan prinsip jenis benda atau zat mempunyai tempat alami di mana ia berada dan kemana ia pergi. Jadi apa secara alami akan naik ke atas ke arah matahari dan bintang. Batu adalah benda bumi dan ia akan jatuh ke asalnya di bumi. Batu besar lebih membumi dari pada batu yang kecil, sehingga batu besar akan javh lebih cepat.
Lebih dari 2000 tahun, tak seorang pun merasa perlu melakukan eksperimen untuk mendapatkan informasi tentang kesemestaan fisika, sampai Galileo ( 1564 - 1642 )
melakukan revolusi di bidang sains dengan melakukan eksperimen. Apa yang ditemukan oleh Galileo, sebagai hasil pengukuran yang teliti, adalah bahwa " semua benda yang jatuh bebas mempunyai percepatan yang sama pada tempat yang sama di dekat permukaan bumi ". Percepatan ini disebut percepatan gravitasi dan disimbolkan dengan huruf g, g memiliki nilau yang berbeda ditempat yang berbeda. Namum rata-rata nilai g diatas permukaan laut adalah 9.81 m/s^2 . Nila g dikutub adalah 9.83 m/s^2 dan di ekuator 9.78 m/s^2 , nilai ini masih kecil dibandingkan nilai g di puncak Mount Everest.
Kesimpulan Galileo bahwa semua benda jatuh dengan percepatan yang sama dan konstan merupakan idealisasi realitas. Dalam kenyataannya percepatan yang dialami oleh suatu benda dipengaruhi oleh lokasinya di Bumi, ukuran, dan bentuknya, massa jenisnya, dan keadaan udara. Sebagai contoh, sebuah batu jatuh lebih cepat daripada bulu ketika di udara, karena pengaruh gaya apung dan hambatan udara. Dalam ruang hampa, batu dan bulu jatuh dengan percepatan yang tepat sama.
Gerak jatu bebas adalah gerak lurus berubah beraturan yang memiliki kecepatan awal Vo = 0 dan mengalami percepatan a = g. Dengan demikian kita dapat menerapkan rumus gerak lurus berubah beraturan pada benda yang bergerak jatuh bebas. Perlu diingat bahwa arah percepatan gravitasi g adalah selalu ke bawah, tidak peduli apakah kita berhubungan dengan benda yang jatuh atau benda yang mula-mula dilempar keatas.